Factorization of totally positive, symmetric, periodic, banded matrices with applications
نویسندگان
چکیده
منابع مشابه
Fast symmetric factorization of hierarchical matrices with applications
We present a fast direct algorithm for computing symmetric factorizations, i.e. A = WWT , of symmetric positive-definite hierarchical matrices with weak-admissibility conditions. The computational cost for the symmetric factorization scales as O(n log n) for hierarchically off-diagonal low-rank matrices. Once this factorization is obtained, the cost for inversion, application, and determinant c...
متن کاملAn Incomplete Cholesky Factorization for Dense Symmetric Positive Definite Matrices
In this paper, we study the use of an incomplete Cholesky factorization (ICF) as a preconditioner for solving dense symmetric positive definite linear systems. This method is suitable for situations where matrices cannot be explicitly stored but each column can be easily computed. Analysis and implementation of this preconditioner are discussed. We test the proposed ICF on randomly generated sy...
متن کاملThe Approximation of a Totally Positive Band Matrix by a Strictly Banded Totally Positive One*
Every nonsingular totally positive m-banded matrix is shown to be the product of m totally positive one-banded matrices and, therefore, the limit of strictly m-banded totally positive matrices. This result is then extended to (bi)infinite m-banded totally positive matrices with linearly independent rows and columns. In the process, such matrices are shown to possess at least one diagonal whose ...
متن کاملGroups of banded matrices with banded inverses
AproductADF1 : : : FN of invertible block-diagonalmatrices will be bandedwith a banded inverse. We establish this factorization with the numberN controlled by the bandwidthsw and not by the matrix size n:When A is an orthogonal matrix, or a permutation, or banded plus finite rank, the factors Fi have w D 1 and generate that corresponding group. In the case of infinite matrices, conjectures rema...
متن کاملImmanants of Totally Positive Matrices Are Nonnegative
If/ is an irreducible character of Sn, these functions are known as immanants; if/ is an irreducible character of some subgroup G of Sn (extended trivially to all of Sn by defining /(vv) = 0 for w$G), these are known as generalized matrix functions. Note that the determinant and permanent are obtained by choosing / to be the sign character and trivial character of Sn, respectively. We should po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1993
ISSN: 0024-3795
DOI: 10.1016/0024-3795(93)90338-o